Training : Factor Analysis

Training: Factor Analysis

Training

FACTOR ANALYSIS

By Suwanna Sayruamyat

Email: <u>suwanna.s@ku.ac.th</u>

Facebook: Suwanna Sayruamyat Page: **<u>EatEcon**</u>

Website: www.eatecon.com

- underlying structure among the variables in the analysis.
- dimensions called **FACTORs**.
- information.

Training : Factor Analysis

• Factor analysis is an interdependence technique whose primary purpose is to define the

• Variables are not classified as either dependent of independent. Instead, the whole set of interdependent relationships among variables is examined to define a set of common

• Factor analysis is designed to represent a wide range of attributes on a smaller number of **new dimensions within data**, composite dimensions or factors with a minimum loss of

Aims of factor analysis

Training : Factor Analysis

Data summarisation

Data reduction

Variable selection

•The goal of component analysis is to reduce a number of correlating variables to a smaller number of – usually uncorrelated – variables.

$$\begin{split} Y_1 &= a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p \\ Y_2 &= a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p \\ \vdots &= \vdots \\ Y_p &= a_{p1}X_1 + a_{p2}X_2 + \dots + a_{pp}X_p \end{split}$$

Where Xs are the original variables and Ys are the new variables (component scores). are component score coefficients. p is a number of components.

The sum of component variance is equal to the number of components.

Training : Factor Analysis

Communalities

A communality is the extent to which an item correlates with all other items. Higher communalities are better. If communalities for a particular variable are low (between 0.0-0.4), then that variable may struggle to load significantly on any factor. In the table below, you should identify low values in the "Extraction" column. Low values indicate candidates for removal after you examine the pattern matrix.

	Initial	Extraction
Information about health risks caused by obesity, anorexia		
nervosa bulimia and other illesses liked to food	1	0.642
Information about foods related to health and beauty	1	0.617
Information about food containing anti ageing properties	1	0.625
Information about life style, food tourism and eating out	1	0.586
information about trends, consumption evolution, food fads, and underscoring ethnicity, cultural, social diversity of Italian polulation	1	0.475
Information about food safety issues caused by bacteria and other substances	1	0.492
Information about food regulations, affecting consumer choices and the food industry	1	0.51
Information about tradition, regional typical products and quality foods that are disappearing from the litalian market	1	0.566
Information about the production techniques used in the primary sector	1	0.761
Information about the food processing industry and innovations in terms of products and processes	1	0.737
Information about Italian and international cuisine, food culture and good living	1	0.556

Component Matrix			
	(Component	
	1	2	3
Information about health risks caused			
by obesity, anorexia nervosa bulimia			
and other illesses liked to food	0.403	0.626	0.
Information about foods related to			
health and beauty	0.478	0.027	0.
Information about food containing anti			
ageing properties	0.487	0.342	0.
Information about life style, food			
tourism and eating out	0.539	-0.52	0.
information about trends,			
consumption evolution, food fads, and			
underscoring ethnicity, cultural, social			
diversity of Italian polulation	0.546	-0.39	0.
Information about food safety issues			
caused by bacteria and other			
substances	0.528	0.461	-0.
Information about food regulations,			
affecting consumer choices and the			
food industry	0.577	0.306	-0.
Information about tradition, regional			
typical products and quality foods that			

Component analysis VS Factor analysis

$$Y_i = \sum_{j=1}^p a_{ij} x_j fori = 1, 2, ..., p$$

$$X_j = \sum_{j=1}^p \lambda_{ji} F_i + \lambda F_{j.spec} + e_j for j = 1, 2, \dots, p$$

Formative

Training: Factor Analysis

- Direction of causality is from measure to construct
- No reason to expect the measures are correlated
- Indicators are not interchangeable

Reflective

- to measure

 $X_j =$

Training : Factor Analysis

$$\sum_{i=1}^{p} b_{ji} Y_i for j = 1, 2, \dots, p$$

Direction of causality is from construct

Measures expected to be correlated Indicators are interchangeable

If you want summarising a number of correlating variables in a few new variable with smallest possible loss of information, the **component analysis** is the answer.

If you want **explaining the** correlations in a data set in form of factors, the **factor analysis** is the answers.

However, component analysis is less complicated and usually give the same results as exploratory factor analysis. Thus, **most component** analysis and EFA both go under the name of factor analysis (Blunch, 2013).

Reflective

R1. I eat healthy food. R2. I do not each much junk food. R3. I have a balanced diet.

Photo by http://statwiki.kolobkreations.com/index.php?title=Exploratory_Factor_Analysis#Communalities

Training : Factor Analysis

Formative vs. Reflective

Formative

- F1. I have a balanced diet.
- F2. I exercise regularly.
- F3. I get sufficient sleep each night.

Types of factor analysis

Exploratory factor analysis (EFA)

- Summarising data by grouping correlated variables.
- Investigating sets of measured variables related to theoretical constructs.
- Preliminary exploration of data (Data-driven)

Confirmatory factor analysis (CFA)

- Testing generalisation of factor structure to new data.
- Making use of only the measurement model component of the general SEM.
- It should be based on theory and/or the results of EFA and other psychometric tests.
- Test of theory against data(Theory-driven)

Exploratory factor analysis EFA

- Also called "unrestricted" factor analysis.
- Finds factor loadings which best reproduce correlations between observed variables.
- n factors = n of observed variables.
- All variables related to all factors.
- Retain <n factors which 'explain' satisfactory amount of observed variance.
- 'Meaning' of factors determined by pattern of loadings.
- No unique solution where >1 factor, rotation used to clarify what each factor measures.

Assumptions

- Based on linear relationships.
- The data collected are interval scaled.
- Multicollinearity in the data is desirable because the aim is to identify interrelated set of variables.
- The data should not be a variable that only correlate with itself and no correlation exists with any other variables.
- Data is not an identity matrix.

Sample size

- Minimum number of variable for FA is 5 observations per variable (1:5)
 - Ex. 20 variables should have \geq 100 observations.

- Ideal condition ratio is 1:20. Ex. 20 variables ideally should > 400 observations.
- The sample must have more observations than variables.

The minimum absolute sample size should be 50 observations.

Source: Hair et al. (2014)

$k\overline{r}$ The reliability of k items is Cronbach's alpha => α_{std} = $\overline{1+(k-1)r}$

SPSS

- 1. Click Analyse > Scale > Reliability Analysis ...
- 2. Select the items in the left block adding to the right block.
- 3. Click 'Statistic' > continue
- 4. In the model pane choose 'Alpha'
- 5. OK

Reliability

Where

- k = no. of items
- std =standardised
- \overline{r} = the average correlation

Rotation options

Orthogonal

- Maintains independence of factors
- More commonly seen
- Usually at least one option
- Method: varimax, quartimax, equamax, parsimax, etc.

Oblique

- Allows dependence of factors
- Make distinctions sharper (loadings closer to 0's and 1's.
- Can be harder to interpret once you lose independence of factors
- Method: promax, oblimin, etc.

Uniqueness

- Uniqueness for each item describes **the** proportion of the item described by the factor model.
- Recall an R-squared: Proportion of variance in Y explained by X.
- 1-Uniqueness: proportion of the variance in X_k explained by F1, F2, etc.
- Uniqueness: represents what is left over that is not explained by factors
- A GOOD item has a LOW uniqueness \bullet

Convergent validity

Convergent validity means that the variables within a single factor are highly correlated. This is evident by the factor loadings. Sufficient/significant loadings depend on the sample size of your dataset. The table below outlines the thresholds for sufficient/significant factor loadings. Generally, the smaller the sample size, the higher the required loading. V can see that in the pattern matrix above, we would need a sample size of 60-70 at a minimum to achieve significant loadings for variables loyalty1 and loyalty7. Regardless of sample size, it is best to have loadings greater than 0.500 and averaging out to greater than 0.700 for each factor.

http://statwiki.kolobkreations.com/index.php?title=Exploratory_Factor_Analysis#Communalities

S	Sample size	Sufficient factor loadi
	50	0.75
	60	0.70
t	70	0.65
N۵	85	0.60
ve	100	0.55
	120	0.50
	150	0.45
ſ	200	0.40
	250	0.35
	350	0.30

- Training: Factor Analysis 2. Determine the number of factors
 - 3. Estimate the model using predefined number of factors
 - 4. Rotate and interpret
 - 5. Decide if changes need to be made (e.g. drop item(s), include item(s)) and repeat step 3 - 4
 - 6. Construct scales and use in further analysis

Steps in EFA

1. Collect and explore data: choose relevant variables

For excel: <u>https://www.eatecon.com/courses/training/?tab=tab-overview</u>

For SPSS

Google classroom Class code: 7dl3bgj

Training : Factor Analysis

Step 1:

- Download the file Factor analysis - Food inf preferences.sav
- To perform a factor analysis: click the **Analyse > Dimension Reduction > Factor**

BAEAUT	ANTIA
4.00	4
3.00	4
3.00	4
4.00	5
4.00	4
3.00	4
4.00	4
4.00	4
4.00	4
4.00	4
4.00	5
3.00	4
-999.00	4
4.00	4
3.00	4
5.00	5
4.00	5
3 00	Λ

Practice

Transform	Analyze	Direct I	Marketing	Graphs	Utilities	s Extensi	ons Wind	dow Help
🕞 Factor a	Reports	6			► 3M S	PSS Statist	ics Data Ed	itor
Factor a Reports Descriptive Statistics Tables Compare Means General Linear Model Generalized Linear Models Mixed Models							ARC	
	Tables							
	Compa	re Means	\$					
	Genera	Linear N	Vodel					
	Genera	lized Line	ear Models	5				
	Mixed N	Vodels						
4	Correla	te				+ <u> </u>	4	1
4	Regress	sion				4 3	5	1
4	Loglinear					5 5	3	0
4	Neural Networks					5 4	3	1
4	Classify							
	Dimension Reduction					🖁 Factor		
3	Scale					Corresp	ondence A	nalysis
4	Nonpar	ametric ⁻	Tests		► .	🗐 Optimal	Scaling	
4	Forecas	sting				4 4	3	1
3	Surviva	I				5 4	3	1
3	Multiple	e Respon	se			1 4	3	0
	援 Miss	sing Value	e Analysis.				4	0
4	Multiple	e Imputat	tion			D D D	4	0
3	Comple	ex Sample	es			4 4	3	0
3	📅 Simı	ulation				3 4	3	0
3	Quality Control					3 2	4	0
3						5 5	4	0
	Spatial	and Tem	poral Mod	eling		. r		1
4						2		1
5	4	5	3	4		3 3	5	0
2	2	1	Λ	1		2 1	1	1

Step 2:

PRIND, and COUIS) from the left hand side dialogue box and click the blue arrow

• Select 11 attitudinal variables (HEALT, BAEAUT, ANTIA, LISTA, TREND, FSAFE, POLIC, TRADI, AGRIC,

Step 3:

- Click on **Descriptives...** to open the Factor \bullet analysis Descriptives box
- Select: \bullet
 - 'Univariate descriptive',
 - 'Initial solutions'
 - 'KMO and Barlett's test of sphericity'
- Click on Continue; lacksquare

Step 4:

- Click on **Extraction** to open 'Factor analysis Extraction' box
- Select 'Principal components' method, 'Correlation matrix', 'Unrotated factor solutions' and 'Scree plot'
- Click on **Continue**;

Practice

	Factor Analysis					
	Variables: HEALT BAEAUT ANTIA ANTIA LISTY TREND FSAFE POLIC FRADI AGRIC PRIND COUIS Selection Variable: Value	Descriptives Extraction Rotation Scores Options	Meth Ana Extr	nod: Princip lyze Correlation n Covariance n act Based on Eige Eigenvalues g Fixed numbe Factors to ext	Factor Ana pal compo natrix natrix envalue reater than er of factor ract:	alysis: Extraction nents Display Unrotated factor solu Scree plot
et	Paste Can	cel OK	Max	imum Iteration	ns for Con	vergence: 25 Cancel Con
					1	

Step 5:

- Click on Rotation to open the 'Factor Analysis Rotation' box
- Select Varimax, 'Rotated solution' and 'Loading plot(s)'
- Click on Continue;

20

Practice

• · • · · • · •

5....

Step 6:

- Click on Options to open the 'Factor Analysis Options' box
- Select 'Sorted by size'
- Click on Continue;
- Next Click on OK.

ID	
AGE AGE_01 AGE_02	
EDUC2	
-	
?	Reset

Factor Analysis 📊 Ordinal ght Variables: 👖 Ordinal ght Descriptives... HEALT jht BAEAUT Extraction... Rotation... TREND Scores... **FSAFE** Options... TRADI

Practice

🔪 Input

🔪 Input

Test for an

Information

Note: Correlation matrix => highly correlated variables indicate that factor analysis may be an **appropriate** <u>multivariate statistical technique</u> to explore these variables.

		about health risks caused by obesity, anorexia nervosa bulimia and other illesses liked to food	Information about foods related to health and beauty
Correlation	Information about health risks caused by obesity, anorexia nervosa bulimia and other illesses liked to food	1.000	.262
	Information about foods related to health and beauty	.262	1.000
	Information about food containing anti ageing properties	.384	.429
	Information about life style, food tourism and eating out	.007	.217
	information about trends, consumption evolution, food fads, and underscoring ethnicity, cultural, social diversity of Italian polulation	.028	.286
	Information about food safety issues caused by bacteria and other substances	.401	.149
	Information about food regulations, affecting consumer choices and the food industry	.241	.134

Suwanna Sayruamyat

ן	ic	len	tity	matrix	
---	----	-----	------	--------	--

information about

trends,

Information about food containing anti ageing properties	Information about life style, food tourism and eating out	consumption evolution, food fads, and underscoring ethnicity, cultural, social diversity of Italian polulation	Information about food safety issues caused by bacteria and other substances	Information about food regulations, affecting consumer choices and the food industry	about tradition, regional typical products and quality foods that are disappearing from the litalian market	Information about the production techniques used in the primary sector	Information about the food processing industry and innovations in terms of products and processes
.384	.007	.028	.401	.241	.105	.170	.195
.429	.217	.286	.149	.134	.210	.117	.138
1.000	.152	.173	.255	.194	.143	.187	.203
.152	1.000	.394	.111	.115	.417	.240	.203
.173	.394	1.000	.123	.218	.336	.276	.203
.255	.111	.123	1.000	.376	.212	.289	.310
.194	.115	.218	.376	1.000	.302	.402	.400

Information

Correlation Matrix

Appropriateness of data (adequacy)

KMO and Bartlett's Test				
Kaiser-Meyer-Olkin Measu Adequacy.	.775			
Bartlett's Test of	Approx. Chi-Square	2241.220		
Sphericity	df	55		
	Sig.	.000		

Note:

- Kaiser-Meyer-Olkin value should be large (>.5).
- Bartlett's test should be less (p-value <.05).
- Null hypothesis: the correlation matrix of population under investigation is not an identity matrix.

KMO statistics

- Marvelous: .90s
- Meritorious: .80s
- Middling: .70s
- Mediocre: .60s
- Miserable: .50s
- Unacceptable: <.50

Bartlett's Test of Sphericity

A significant result (Sig. < 0.05) indicates matrix is not an identity matrix; i.e., the variables do relate to one another enough to run a meaningful EFA.

How many factors should be selected?

	Initial Eigenvalues			Extractio	n Sums of Square	d Load
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumu
1	3.547	32.248	32.248	3.547	32.248	
2	1.574	14.309	46.557	1.574	14.309	
3	1.376	12.512	59.069	1.376	12.512	
4	.813	7.395	66.464			
5	.771	7.013	73.477			
6	.620	5.638	79.114			
7	.581	5.280	84.395			
8	.536	4.868	89.263			
9	.500	4.543	93.807			
10	.455	4.134	97.941			
11	.226	2.059	100.000			

Total Variance Explained

Extraction Method: Principal Component Analysis.

Initial Eigenvalue = $\frac{total variance}{total no. of component}$

Factor1 accounts for 32.57% of the total variance (3.594/11) Factor2 accounts for 14.42% of the total variance (1.574/11) Factor3 accounts for 12.51% of the total variance (1.376/11)

Therefore, first tree factors explain 59.7% of total variance, which mean new variables contain the information of original variables by 59.75%.

Training : Factor Analysis

Rotated Component Matrix

Information about the food processing innovations in terms of products and pr Information about the production techn the primary sector Information about food regulations, affe consumer choices and the food industr Information about food safety issues ca bacteria and other substances Information about life style, food tourisr out Information about Italian and internation food culture and good living information about trends, consumption

food fads, and underscoring ethnicity,

Training : Factor Analysis

		Component		
		1	2	3
industry and rocesses	PRIND	0.825	0.223	0.038
niques used in	AGRIC	0.82	0.286	-0.005
ecting Y	POLIC	0.667	0.057	0.22
aused by	FSAFE	0.52	-0.025	0.465
m and eating	LISTY	0.071	0.753	0.027
nal cuisine,	COUIS	0.104	0.735	0.083
evolution, cultural,	TREND	0.119	0.663	0.116

How to save new variables

- 1. Redo step1 6
- 2. Step 7: Click on Scores to open the 'Factor Analysis: Factor Scores' box
- 3. Select 'Save as variables' and **Regression method**
- 4. Click on Continue and OK

	Factor Analysis	
GENDER	Variables: HEALT BAEAUT ANTIA Descriptives Descriptives	
AGE_01 AGE_02 EDUC2	 LISTY TREND FSAFE POLIC TRADI 	 Factor Analysis: Factor Scores Save as variables Method
	AGRIC PRIND COUIS	 Regression Bartlett Anderson-Rubin
	Selection Variable: Value	Display factor score coefficient matrix Cancel Continue
? Reset	Paste Cancel OK	

Training : Factor Analysis

	ï	
	 +	

- Inductive, a theoretical (Data->Theory)
- Subjective judgement & heuristic rules
- Be explicit and test this measurement theory against sample data

• We usually have a theory about how indicators are related to particular latent variables (Theory-> Data)

Training : Factor Analysis

1.http://statwiki.kolobkreations.com/index.php?title=Exploratory_Factor_Analysis#Communalities